Selasa, 10 Januari 2017

SUKU BANYAK




Sumber: http://hernakuncoro.blogspot.co.id/2010/01/suku-banyak.html

A. Suku Banyak (Polinom) 
Bentuk Umum : 

dimana : 
 adalah konstanta, n bilangan cacah. 
Pangkat tertinggi x menyatakan derajat suku banyak. 
Contoh :  

B. Menghitung Suku Banyak/Nilai Suku Banyak 
Misal  

Cara Menghitung : 
1. Dengan Substitusi 
Jika  , maka nilai suku banyak tersebut x = -1 atau f (-1) . 
 

2. Dengan pembagian sistem horner 
Jika  adalah suku banyak, maka f (h) diperoleh dengan cara berikut : 
 

C. Pembagian Suku Banyak
Secara matematis dapat ditulis : 

 

Jika pembaginya fungsi linier, maka hasil bagi dan sisanya dapat dicari dengan cara metode pembagian sintetis Horner * Jika pembaginya bukan linier dan tidak dapat diuraikan maka digunakan metode identitas. 

Contoh: 
Tentukan hasil bagi dan sisa pembagian suku banyak:dengan x -1 dengan menggunakan metode sintesis Horner! 
Jawab : 
Pembagian adalah (x-1), berarti k = 1 
Kita gunakan metode sintetik berikut: 
 
Dari bagan diatas terlihat bahwa hasil bagi adalah (x-1) dan sisa 40 

D. Teorema Sisa
1. Suatu suku banyak f ( x ) jika dibagi ( x – a ) maka sisanya = f ( a )
2. Suatu suku banyak f( x ) jika dibagi ( x + a) maka sisanya f(-a)
3. Suatu suku banyak f ( x ) jika dibagi (ax – b) maka sisanya =
4. Suatu suku banyak f ( x ) habis dibagi (x – a) maka f (a) = 0

E. Teorema Faktor
1. Jika pada suku banyak f (x) berlaku f (a) = 0 dan f (b) = 0 maka f (c) = 0 maka f (x) habis dibagi 
(x – a)(x – b)(x – c).
2. Jika (x – a) adalah faktor dari f (x) maka x = a adalah akar dari f (x).
3. Jika f (x) dibagi oleh (x – a)(x – b) maka sisanya : 
4. Jika f (x) dibagi oleh (x – a)(x – b)(x – c) maka sisanya :


Tidak ada komentar:

Posting Komentar